
Energy-Efficient Fault-Tolerant Mechanism for
Clustered Wireless Sensor Networks

Yongxuan Lai1,2, Hong Chen1,2

1School of Information, Renmin University of China, Beijing, P.R.China
2Key Laboratory of Data Engineering and Knowledge Engineering, MOE

Email: laiyx@ruc.edu.cn, chong@ruc.edu.cn

Abstract—Clustering is an effective topology control and com-
munication protocol in wireless sensor networks (“sensornets”).
However, the harsh deployed environments, the serious resource
limitation of nodes, and the unbalanced workload among nodes
make the clustered sensornets vulnerable to communication faults
and errors, which undermine the usability of the network.
So mechanisms to improve the robustness and fault-tolerance
are highly required in real applications of sensornets. In this
paper, a distributed fault-tolerant mechanism called CMATO
(Cluster-Member-based fAult-TOlerant mechanism) for sensor-
nets is proposed. It views the cluster as an individual whole
and utilizes the monitoring of each other within the cluster
to detect and recover from the faults in a quick and energy-
efficient way. CMATO only needs the local knowledge of the
network, relaxing the pre-deployment of the cluster heads and
a k-dominating set (k>1) coverage assumptions. This advantage
makes our mechanism flexible to be incorporated into various
existing clustering schemes in sensornets. Furthermore, CMATO
is able to deal with failures of multiple cluster heads, so it
effectively recovers the nodes from the failures of multiple cluster
heads and the failures of links within the cluster, gaining a much
more robust and fault-tolerant sensornets. The simulation results
show that our mechanism outperforms the existing cluster-head
based fault-tolerant mechanism in both fault coverage and energy
consumption.

Keywords - fault-tolerant mechanism; energy-efficient;
clustering; wireless sensor networks

I. INTRODUCTION

In wireless sensor networks (”sensornets”) [1], it is well
known that clustering is an effective and useful mechanism for
topology control and data gathering [2], [3], [4]. In clustering
scenario, the network is partitioned into clusters, and cluster
heads that act as a “backbone” of the network are selected.
Each node in the “backbone” merges data from its member
nodes, so it gains much reduction of data transmissions.
Many applications on sensornets, such as data gathering, data
aggregation, are based on clustering.

However, clustering also brings about some problems for
the sensornets, especially when considering the fault-tolerance
and robustness issues in the sensornets. Many sensornets are
often deployed in harsh and poor environments, such as the
battlefield, forests, etc. The changing external environment
and the highly resource-constrained nature of nodes make the
network vulnerable to various interference. For example, the

This work is supported by the National Natural Science Foundation of
China under Grant No.60673138.

Fig. 1. Illustration of faults in clustered sensornet . Rectangles of A, ...,
I denote the clusters, the circles represent the communication ranges of the
cluster heads. Dark areas are affected by the failure of the cluster head of E.

weather sensitive nodes may fail and stop working in rainy
days, making it hard to maintain the clustered structure of
the network. Meanwhile, the cluster heads, who assume more
tasks in clustered sensornets, have a larger probability of er-
rors. Once cluster head is failed, it would prevent transmitting
data outside in a cluster or even larger scale. As Fig.1 shows,
once the cluster head E fails, the whole cluster would be in a
failure, leading to the incapability of its members transmitting
data outside. Even worse, since packets generated by cluster
F, H, and I are relayed through E, these clusters would also
be in a state of failure unless a fault-tolerant mechanism
is used. As faults are inevitably exists in sensornets, fault-
tolerant mechanisms are crucial and highly required for the
applications in the network.

Some protocols have been proposed to combat the faults in
the clustered sensornets either through the pre-computation
of cluster head placements or the cluster-head based run-
time monitoring. However, both of these schemes have their
drawbacks. The k-fold minimum dominating set (k-MDS)
scheme, which belongs to the scheme of pre-computation of
cluster head placements, needs to know the global knowledge
and pre-calculate the locations of the cluster head centrally;
while for the cluster head monitoring scheme, it can only
detect and recover from a single cluster head failure. We argue
that the overhearing techniques could be utilized in the fault-
tolerant mechanisms in sensornets. Due to the broadcasting
nature of wireless transmissions, many nodes in the vicinity
of a sender node overhear its packet transmissions even if they
are not the intended recipients. Several energy efficient MAC

1-4244-1251-X/07/$25.00 ©2007 IEEE. 272

protocols, such as WiseMAC [5], Wake-Up-Frame [6], and
SyncWUF [7], have been proposed in MANET (mobile ad hoc
network) or sensornets. They switch the RF (radio frequency)
transceiver, which is one of the biggest power consumers in
a sensor node, to low-power sleep mode as much as possible,
yet they can wake up for a very short time randomly or
periodically, saving a factor of tens or even hundreds of energy.
So it is cheap for the nodes to aware the liveness of other nodes
and run the fault-tolerant mechanisms through these new kind
of overhearing techniques in sensornets.

In this paper, we present a distributed fault-tolerant mech-
anism called CMATO (Cluster Member based fAult-TOlerant
mechanism) in sensornets. In CMATO , the nodes within the
cluster are all involved in the processing, they monitor the
links to the cluster head and overhear the transmissions of the
cluster heads who are in neighborhoods. When a cluster head
fails, its cluster members will detect it and re-select a new
cluster head for the cluster; when the link from the cluster
head to the cluster member is broken, the member would
transmit itself to the neighboring cluster for recovery. Both
the detection and recovery are operated locally in the running
time. Simulation results show that CMATO can be embedded
into the existing clustering algorithms to detect the faults in the
nodes, and then dynamically recover the network from faults
in an energy-efficient way.

The following sections are organized as follows: section
II summarizes the related work. Section III gives some def-
initions and the models discussed in this paper. Section IV
presents the detailed fault-tolerant mechanism. Section V de-
scribes the experimental setup and evaluates the performance
of CMATO . Finally, section VI concludes the paper.

II. RELATED WORK

Several clustering algorithms have been proposed in sensor-
nets. In LEACH [2], each node has an equal chance to become
a cluster head in each round. The cluster forming process is to
finish within K (a constant) steps, and then each cluster head
collects data from its members and communicates directly with
the base station. An improved version to LEACH, LEACH-C
[8] uses a centralized clustering algorithm to produce better
clusters, thus achieves better performance. TPC [3] (Two-
Phase Clustering scheme) contains two phrases in clustering
process. In the first phrase of TPC, it uses a LEACH-like
clustering algorithm to generate cluster heads. In the second
phrase, also called cluster restructuring, each cluster member
searches for a neighboring node within the cluster to set up
an energy-saving relay link. Then data are aggregated on
this relay link to reduce the intra-cluster communication cost.
HEED [4] extends LEACH by incorporating communication
range limits and intra-cluster communication cost information.
The probability for each node to become a tentative cluster
head depends on its residual energy, and final cluster heads are
selected from the tentative cluster heads according to the intra-
communication cost. All these clustering algorithms focus on
the balanced energy consumption mechanism and efficient
cluster forming algorithms for the sensornets. Unfortunately,

they pay little attention on the fault-tolerant issues in the
clustered network.

For the fault-tolerant mechanism, [9] proposes a multi-path
routing in sensornets. It builds multiple routing paths from
the source to the destination, so transmissions can switch
to another path when a path is failed. [10] investigates the
problem of cluster head placements so that every node can
communicate with at least two neighboring cluster heads.
When a cluster head is failed, the node can transfer itself to
the other cluster head for transmissions. In [11], it converts the
node placement problem into the k minimum dominating set
(k-MDS) problem. The goal of k-MDS is to find the minimal
subset of the nodes as cluster heads so that every node can
communicate with at least k cluster heads. When k=1, it is
the minimal coverage problem; when k=2, it is the problem
discussed in [10]. Unfortunately, the base station needs to
know the global knowledge and pre-calculate the location
scheme by centralized processing. In [12], Gupta etc. proposed
a fault-tolerant mechanism based on inter-cluster monitoring.
When a gateway, say I in Fig.1, can not communicate with
some gateway E, I would consult to its neighboring gateways
F and H whether E is failed. If both F and H confirm its
broken link with E, gateway I would declare the failure of
E. Then the neighboring cluster heads would further negotiate
with each other to transfer the nodes of E into their clusters.
The main drawback of this approach is that it can not deal
with the failures of multiple gateways because of the mutual
inter-cluster-head consulting mechanism. Moreover, the nodes
would have to transmit the control messages in a large distance
when running the cluster-head based mechanism.

III. PRELIMINARIES

A. Network Model

Let us consider a sensor network which consists of N nodes
uniformly deployed over a square area. We denote the ith

sensor by ni and the whole node set S = {n1, n2, .., nN},
where |S| = N . There is a base station (i.e., sink node)
located in the field, and the nodes use multi-hop routing to
send data to it. We assume all nodes, including the cluster
heads and the normal nodes, are homogeneous and have the
same capabilities, and they use power control to vary the
amount of transmission power which depends on the distance
to the receiver. We use d(ni, nj) to denote the distance from
node ni to node nj , and bi-directional symmetrical links are
assumed. We then provide three definitions for the convenience
of discussions in the following sections:
Definition1 (Neighbor). Nbr(ni, r) is the r-range neighbor
set of ni, if ∀nj ∈ Nbr(ni, r), s.t. d(ni, nj) ≤ r. ni and nj

are r-range neighbors of each other.
Definition2 (In-cluster Neighbors). INbr(ni, r) is the r-range
in-cluster neighbor set of ni, if ∀nj ∈ INbr(ni, r), s.t. i �= j,
nj ∈ Nbr(ni, r) and CH(ni) = CH(nj), where CH(ni)
denotes the cluster of node (ni). ni and nj are r-range in-
cluster neighbors of each other. Of course, the cluster head is
always the in-cluster neighbor of its members.
Definition3 (Neighboring Cluster Head). NCH(ni, r) is the

1-4244-1251-X/07/$25.00 ©2007 IEEE. 273

r-range neighboring cluster head set of ni, if ∀chj ∈
NCH(ni, r), s.t. chj ∈ CHS

⋂
Nbr(ni, r) and chj �=

CH(ni), where CHS denotes the set of all cluster heads and
CH(ni) denotes the cluster head of ni. chj is the neighboring
cluster head of ni.

For example, in Fig.2(a), n1, n4, n5 are in-cluster neighbors
of n6, because they are neighbors of n6 and in the same cluster
with n6. In Fig.2(b), the node m has a neighboring cluster head
B.ch because m and B.ch are neighbors of each other.

B. Fault Model

Due to the highly limited resource of the nodes and harsh
deployed environments, sensornets are vulnerable to various
communication faults and errors. These are different ways to
classify these faults into different categories based on different
criteria. According to the time the faults last, the faults could
be divided into ephemeral, intermittent, and permanent faults.
Ephemeral faults relate to faults who happen in a very short
time and the nodes can recover automatically by themselves,
such as the temporal disconnection of nodes when a vehicle
passes by. Intermittent faults are similar to ephemeral faults,
only they last for a longer time before the nodes automatically
recover from these faults. The permanent faults are the most
serious ones. Damages and crashes of nodes caused by men
or natural disasters belong to this kind. Once they happen,
the nodes can not revert to the original state, cutting down
the connections forever. According to the structure of the
communication, we could divide the faults into medium faults
and nodes faults. The medium faults happen when there are
some interference in the medium which the wireless link
depends on. For example the link may be cut off when there
are barriers just located in the path between two nodes. The
node faults are the failure or errors of the nodes themselves,
caused by the hardware or software mistakes or external
damages. In clustering scenario, when the nodes who serve
as cluster heads are failed, the whole cluster are disabled
to communicate outside, highly reduce the availability of the
sensornets.

Note that intermittent faults can also viewed as permanent
faults because during the time the faults happen, the network
are in failure and are need to be recovered so as the data
could be transmitted outside. Due to the large impact of the
permanent (and intermittent) faults in the cluster head side,
in this paper we explore the fault-tolerant mechanism for
the permanent faults in the cluster head side, as well as the
medium faults between the cluster head and cluster members.

IV. FRAMEWORK

A. Overview

We could see how our fault-tolerant mechanism CMATO
works in Fig.2. In Fig.2(a), the nodes within a cluster overhear
their cluster head ch and their in-cluster neighbors. So the
cluster members could detect the failure of the cluster head
quickly. In Fig.2(b), when all the nodes aware the failure
of the cluster head of E, some nodes (nodes located in the
light gray area) join the neighboring clusters, while others

(a) Detection (b) Recovery

Fig. 2. Overview of the CMATO framework. (a) Cluster members
(n1, n2, ..., n6) are overhearing the cluster head ch and its in-cluster neigh-
bors. (b) When the cluster head of E is failed, nodes in the light gray areas
join the neighboring clusters , and nodes in the in dark gray areas join the
newly constructed cluster E’.

Fig. 3. State transition graph. error free is the normal state of the nodes,
error detecting is the fault detection state, ch error and medium error are
the result state of the detection, indicating the types of faults.

(nodes located in dark gray area) join the newly constructed
cluster E´ . Moreover, there are 4 states for the nodes:
error free, error detecting, ch error, and medium error (see
Fig.3). The transition from error detecting to error free,
ch error, or medium error is the error detection phrase, while
from ch error or medium error to error free is the fault
recovery phrase. We will discuss each of them in the following
subsections.

B. Fault Detection

Fault Detection is the first phrase in our fault-tolerant
mechanism. We consider the cluster as a whole, which could
detect the faults of its own. There are many cases in which
the cluster members could aware the aliveness of their cluster
heads. For example, when the cluster members send the sensed
data to the cluster heads, the cluster heads may reply through
short acknowledged packets. Or the nodes would actively
broadcast beacon messages for synchronization, and these
messages could be used to indicate the aliveness of the cluster
heads. Especially, in the Wake-up-Frame MAC scheme [6]
when the cluster is relaying packets for its neighboring cluster
heads, the cluster head would send lots of very short wake-
up frames, which could be cheaply overheard by the cluster
members through periodical but very short wake-ups.

In our CMATO mechanism, a node is overhearing the
transmissions of its cluster head and its in-cluster neighbors
when in the error free state. If it can not overhear any short
frames or short packets indicating the aliveness of its cluster

1-4244-1251-X/07/$25.00 ©2007 IEEE. 274

head, it would be waken up to transfer to the error detecting
state which keeps its receiver open. Then this node has to
decide whether the failure of the cluster head, or the fault in
the medium has caused the the broken link to the cluster head.

In CMATO , we use an in-cluster consulting mechanism to
correctly classify the type of the faults. The principle of the
CMATO in-cluster consulting mechanism is: if more than α
(a predefined threshold) percents of the nodes in the cluster
detect the failures of the links to the cluster head, then the
cluster head should be declared as a failure. Even if the cluster
head is not failed but most of the cluster members can not
communicate with their cluster head because of the medium
faults, then we could also classify this case into the fault of
the cluster head failure. Because in this case it is wiser for
the whole cluster to re-select a new cluster head. CMATO
uses unable list to represent the list of cluster members
who disconnect from the cluster head. Then unable list is
propagated and updated among the cluster members. If the
length of the list is more than α× |C| (|C| is the number of
member nodes in cluster C), then the cluster head is to be
declared as failed.

We could see the detailed detection flow through an ex-
ample in Fig.2(a). Assume the cluster head ch encounters a
permanent fault at some time, and the whole cluster members
could not overhear the short beacons of the cluster head,
so every member transits its state from error free to er-
ror detecting. The cluster member adds its id to its unable list
(unable list(i) = {i}), sets a random timeout timer (tid)
for broadcasting the unable list, and keeps its receiver open.
Suppose the order for the timers is {t3, t1, t6, t4, t2, t5}. Then
at t3, the timer is fired and n3 broadcasts a ch-unconnect
message which wraps the unable list(3) = {3}. The in-
cluster neighbors of n3, which are n2 and n4, receive this
message and extract the list for a union of its own un-
able list. Then unable list(2) = {2, 3}, unable list(4) =
{4, 3}. All the sender and the receivers of that message
reset their timers: the sender creates a new timer, while
nodes who increase their unable list length set the times
of their timers shorter. Suppose the new order of the timers
is: {t1, t4, t6, t2, t5, t3}, then n1 broadcasts a ch-unconnect
message that wraps unable list(1) = {1} at t1. In the
similar way, the timers and the unable lists of in-cluster
neighbors are reset. That is: unable list(2) = {2, 3, 1},
unable list(6) = {6, 1}, and unable list(5) = {5, 1}.
Suppose the new order of the timers is: {t4, t6, t5, t2, t3, t1},
then at t4, after the broadcasting of ch unconnect mes-
sage that wraps unable list(4) = {4, 3}, the unable lists
are reset as: unable list(3) = {4, 3}, unable list(6) =
{6, 1, 4, 3}, and unable list(5) = {5, 1, 4, 3}. Because the
unable list(6).length = unable list(5).length = 4 >
6 × 60%, then n6 and n5 would declare the failure of the
cluster head by broadcasting a ch-fail message. The nodes
who receive this message for the first time would relay it
immediately so that all the cluster members would know that
their cluster head is failed. Cluster members who receive the
ch-fail message would enter the recovery phrase immediately.

However, if ch is not failed, yet n4 detects that the link to
the cluster head is broken, and enters into the error detecting
state and broadcasts the unable list(4) at some time. In this
case, since the in-cluster neighbors of n4 can still communicate
with its cluster head, they would ignore the ch− unconnect
message from n4. Then after some time interval (the maximal
detecting time interval), since no ch-fail messages are broad-
casted, n4 would figure out that the disconnected link to its
cluster head is due to the faults in the medium of the link. So
it transits to the medium error state.

C. Recovery from Faults

For the recovery from the faults, every node maintains a
neighboring cluster head set NCH (see definition 3). As men-
tioned in subsection B, in CMATO when the cluster heads are
communicating with each other or periodically broadcasting
beacon messages, the cluster members who overhear their
transmissions or beacon messages would aware the aliveness
of these cluster heads. So the cluster members can simply add
the neighboring cluster heads into their NCHs. For example,
in Fig.1, the nodes that locate at region b, f, h, d in cluster E
would add the cluster head of B,F,H,D into their NCHs
respectively. When the cluster members in regions {b, f, h, d}
find the cluster head of E is failed or the link to the cluster head
is broken, they could transfer themselves to their neighboring
clusters. However, the NCH of the nodes located in region
{E − (b+ f + h+ d)} would be empty, so new cluster heads
need to be selected for the recovery of these nodes.

1) Recover from the medium error: We first discuss the
recovery from medium faults since it is the basis for the cluster
head failures. If the cluster member figures out it is a medium
error, it would try to join into its neighboring clusters. If the
neighboring cluster head set is not empty (|NCH| ≥ 1), it just
sends a join-request message to the “best” neighboring cluster
head, where different criteria could be used to weigh among
the neighboring cluster heads. On receiving this message, the
neighboring cluster head would acknowledge this message
and prepare for receiving data from this node, so the node
is recovered. If the neighboring cluster head set is empty
(|NCH| = 0), then the cluster member has to select a node
from its neighbors as the relay node, through which the cluster
member would send data to the cluster head. We argue that
the recovery through neighboring cluster head is better than
through the relay node. Because waking up the node to become
a relay node is actually making that node to be a cluster head.
This method would increase the number of the cluster heads
and increase the interference among clusters when multiple
medium faults happen in the network.

In the cluster head side, it would assume the cluster member
whose link to the cluster head is disconnected for a predefined
time to be failed. So it just removes that node from its cluster
member list.

2) Recover from the ch error: If cluster head is declared
failed, all the cluster members would be notified through the
broadcasted ch-fail messages. Then the cluster member would

1-4244-1251-X/07/$25.00 ©2007 IEEE. 275

compete to be a cluster head through a weight function f :

f(cim)r = r × |INbr||Ci| + (1− r)× Ecur(cim)
Emax(Ci)

where cim is the mth cluster member of cluster Ci, |INbr|
is the size of the in-cluster neighbor set (see definition 3), |Ci|
is the size of the cluster, so |INbr|

|Ci| represents the connectivity
factor. Ecur(cim) is the residual energy of that node, and
Emax(Ci) is an estimate of the maximal residual energy
among the nodes in the cluster Ci, so Ecur(cim)

Emax(Ci)
represents

the energy factor. Note that Emax(Ci) could be estimated in
the cluster formation phrase, since the information of residual
energy are to be exchanged in some clustering protocols. r (0.6
in this paper) is a predefined bias parameter that combines
the connectivity and energy factor into the final weight of
becoming a cluster head. The larger of the weight, the more
probability for the node to become a new cluster head.

According to the weight function f , when a node decide to
be a cluster head, it would broadcast a cluster head advertise-
ment message ch−adv just as the cluster formation phrases do
in some clustering algorithms, such as TPC [3]. Note that timer
based cluster head selection is applicable here. The larger the
weight, the shorter time that node would broadcast a ch−adv
message to notify its neighbors that it is the cluster head. On
receiving this ch−adv message, the nodes would cancel their
timers of becoming cluster heads, and insert the id of the
sender into their NCHs. When new cluster head is selected,
the members in the failed cluster would update their NCHs
and send the join − request messages to the “best” cluster
heads in the NCHs, or to the neighboring relay nodes if the
NCH is empty. To avoid too many collisions of these request
messages, each node would set a timeout based on its id to
defer the sending of the messages. When a collision happen,
the node would reset its timer for a random delay.

When the neighboring cluster head receives the request
message, it just accepts the request and adds the node into
its member list. So some of the nodes would join the newly
selected cluster head, while others would join the neighboring
cluster heads. In extreme cases, there would be nodes whose
NCH is empty even after the new cluster head has been
selected. In these cases, these nodes have to rely on the relay
nodes for the recovery, which is discussed in subsection C.1.

V. PERFORMANCE EVALUATION

A. Environment Setup

To validate the effectiveness of our fault-tolerant mecha-
nism, we implement CMATO in the J-Sim [13] platform with
wireless sensor network extension. In these experiments, there
are 100 nodes randomly deployed in a rectangle field 200×200
m2, where the sink node is located at (0, 0). The network
is clustered using the LEACH [2] and HEED [4] clustering
algorithms, the cluster heads then organize into a spanning tree
for routing. The cluster head selection rate is 0.2, and cluster
range is 50m. The links are bi-directional, and every node can
communicate with the nodes within its communication range.

TABLE I
PARAMETERS AND THEIR VALUES

Parameter Value
Electronics energy (Eelec) 50 nJ/bit

Threshold distance (d0) 87 m

Transmit Amplifier (εfs, εmp) 10.00pJ/bit/m2,
0.0013pJ/bit/m4

Data packet size 4000 bytes
Beacon packet size 20 bytes

Initial energy 1.0 J/battery

Then we design a fault generating scheme to test the
robustness and behavior of the sensor network. Faults are
injected into the network. For every cluster head, if the time
arrival of the kth fault is Tk, then the inter-arrival times are
defined as follows:

X1 = T1,Xk = Tk − Tk−1, for k = 2, 3, ...

We suppose Xi is independent, identically distributed ran-
dom variable, and belongs to the classical exponential distri-
bution with rate parameter λ:

fTi
(t) = λe−λt, t > 0

According to [14], the inter-arrival time stream
{X1,X2,X3, ...} actually form a Poisson process. λ
equals E(Xi), which is the expected value of Xi. Apparently,
the larger the λ, the less frequent the faults happen. So for
the cluster member, since its workload is smaller than that of
the cluster head, we set its λ 10 times equal to the λ of the
cluster head. When a cluster-head fault arrives, we assume
it is the perpetual failure and the cluster head cut off any
of its links to other nodes; when a medium error arrives at
a cluster member, the link from the cluster member to the
cluster head is cut off. All failed nodes are awaken and all
broken links are reconnected after the faults last for 0.2×rts,
where rts denotes the rotation time span1. We also assume
that the controlling messages in our fault-tolerant mechanism
are error-free and correctly received by their destinations.

B. Simulation Results

 0

 50

 100

 150

 200

 250

CMATO
LEACH

CHATO
LEACH

CMATO
HEED

CHATO
HEED

nu
m

be
r o

f f
au

lts
 p

er
 ro

un
d

ch=cluster-head
me=medium

detected ch faults
total ch faults

detected me faults
total me faults

Fig. 4. Faults detected vs. total faults. (λ = 800, rts = 2000)

We implement CMATO in both LEACH and HEED protocol
with the fault generator. Fig.4 compares the performance

1By doing so, CMATO avoids too many unconnected links and dead nodes
in the running time.

1-4244-1251-X/07/$25.00 ©2007 IEEE. 276

 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

3200 1600 800 400 200 100

N
u
m

b
e
r

o
f
re

c
o
v
e
re

d
 n

o
d
e
s

λ

CMATO(LEACH)
CHATO(LEACH)
CMATO(HEED)
CHATO(HEED)

Fig. 5. Impact of λ to the
number of nodes recovered from
cluster head failures. rts = 2000

 0

 5

 10

 15

 20

 25

 30

3200 1600 800 400 200 100

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

 (
m

J
/N

o
d
e
*r

o
u
n
d
)

λ

CMATO(LEACH)
CHATO(LEACH)
CMATO(HEED)
CHATO(HEED)

Fig. 6. Impact of λ to the energy
consumption. rts = 2000

of CMATO with the CHATO (Cluster-Head-based fAult-
TOlerant mechanism) when λ = 800 and rts = 2000s.
CMATO can detect and recover from all the cluster head
failures, while only about 87% of the faults are detected in
CHATO . Furthermore, CMATO is able to recover from all
the the medium faults, while CHATO provides no according
mechanisms for the recovery from the medium faults. So in
Fig.5 we only inject the faults of cluster head failures to further
compare their performance. We vary the Poisson rate λ to
compare the the number of recovered nodes, including cluster
heads and cluster members in the failed cluster. When the
faults are rare (λ ≥ 3200), the network could be recovered
by both the methods. However, when faults happen more
frequently (smaller λ), more and more cluster heads are not
recovered from faults in CHATO mechanism. This is because
the CHATO can only deal with single fault, when multiple
faults happen at the same time and probably in the neighboring
clusters, CHATO would not work. More frequent cluster head
faults also affects CMATO , but all these unrecovered nodes
are cluster members whose neighboring cluster heads are dead,
and they could not find a relay node.

We also study the energy consumption of our mechanism
in our experiments with a simple energy dissipation model
[8], the parameters of which are summarized at table I. We
calculate the energy consumed for running the fault-tolerant
mechanism apart from the other activities such as sensing and
routing. The cost of the fault-tolerant mechanisms includes
overhearing and exchange of the controlling messages. In
Fig.6, we could see that the energy cost of CMATO is almost
linear with λ. This is because the cluster could be viewed as an
whole and deals with the fault individually, so the cost for fault
detection and recovery is proportional to the number of faults
(and the Poisson rate λ). While for the CHATO mechanism,
when more faults happen and more clusters are failed, no
new cluster heads are created. So the cluster-head based fault-
tolerant mechanism has to enlarge its communication range
for link monitoring and inter-cluster communications. So the
line CHATO has a deeper slope than that of CMATO . The
energy consumption of CMATO is more than 60 percent less
than that of CHATO when λ ≤ 400.

VI. CONCLUSION

In this paper, we have presented a distributed fault-tolerant
mechanism called CMATO to improve the robustness of the
clustered sensornets. CMATO views the cluster as a whole
and takes advantage of the inter-cluster monitoring of nodes to
detect the faults. When cluster members detect that the fault is
a perpetual failure of the cluster head, they act cooperatively
to select new cluster head to replace the failed one; when
the cluster members detect the fault is a medium error, they
just transfer themselves to the neighboring clusters or relay
nodes. So it is a distributed algorithm that does not need the
k-dominated set coverage assumption or any global knowledge
of the network. Simulation results show that CMATO is
effective to recover the sensornets from more than one cluster-
head-failed faults at the running time, and is more energy-
efficient than the cluster head based fault-tolerant mechanism.

REFERENCES

[1] D. CRULLER, D. ESTRIN, and M. SRIVASTAVA, “Overview of sensor
networks,” Computer(Long Beach, CA), vol. 37, no. 8, pp. 41–49, 2004.

[2] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
efficient communication protocol for wireless microsensor networks,”
Proceedings of the 33rd Annual Hawaii International Conference on
System Sciences, p. 10, 2000.

[3] W. Choi, P. Shah, and S. Das, “A framework for energy-saving data
gathering using two-phase clustering in wireless sensor networks,”
The First Annual International Conference on Mobile and Ubiquitous
Systems: Networking and Services, pp. 203–212, 2004.

[4] O. Younis and S. Fahmy, “HEED: a hybrid, energy-efficient, distributed
clustering approach for ad hoc sensor networks,” IEEE Transactions on
Mobile Computing, vol. 3, no. 4, pp. 366–379, 2004.

[5] A. El-Hoiydi and J. Decotignie, “WiseMAC: An Ultra Low Power MAC
Protocol for Multi-hop Wireless Sensor Networks,” First International
Workshop on Algorithmic Aspects of Wireless Sensor Networks, 2004.

[6] X. Shi, G. Stromberg, Y. Gsottberger, T. Sturm, I. AG, and G. Munich,
“Wake-up-frame scheme for ultra low power wireless transceivers,”
Global Telecommunications Conference. GLOBECOM’04. IEEE, vol. 6.

[7] X. Shi and G. Stromberg, “SyncWUF: An Ultra Low-Power MAC
Protocol for Wireless Sensor Networks,” IEEE Transactions on Mobile
Computing, vol. 6, no. 1, pp. 115–125, Jan.

[8] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An
application-specific protocol architecture for wireless microsensor net-
works,” IEEE Transactions on Wireless Communications, vol. 1, no. 4,
pp. 660–670, 2002.

[9] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin, “Highly-resilient,
energy-efficient multipath routing in wireless sensor networks,” ACM
SIGMOBILE Mobile Computing and Communications Review, vol. 5,
no. 4, pp. 11–25, 2001.

[10] B. Hao, H. Tang, and G. Xue, “Fault-tolerant relay node placement in
wireless sensor networks: formulation and approximation,” Workshop on
High Performance Switching and Routing (HPSR), pp. 246–250, 2004.

[11] F. Kuhn, T. Moscibroda, and R. Wattenhofer, “Fault-Tolerant Clustering
in Ad Hoc and Sensor Networks,” Proceedings of the 26th IEEE
International Conference on Distributed Computing Systems, 2006.

[12] G. Gupta and M. Younis, “Fault-tolerant clustering of wireless sensor
networks,” Wireless Communications and Networking (WCNC 2003),
vol. 3, 2003.

[13] A. Sobeih, W. Chen, J. Hou, L. Kung, N. Li, H. Lim, H. Tyan,
and H. Zhang, “J-Sim: A Simulation and Emulation Environment for
Wireless Sensor Networks,” IEEE Wireless Communications Magazine,
2005.

[14] J. Sheng, S. Xie, and C. Pan, Theory of Probability and Quantitive
Statistics, 2nd ed. Beijing, China: higher education press (China),
1989.

1-4244-1251-X/07/$25.00 ©2007 IEEE. 277

